
Efficient Bytecode Analysis:

Linespeed Shellcode Detection

Georg Wicherski

Security Researcher



Anatomy of a Shellcode

• Little piece of Bytecode that gets jumped to in an exploit

– Direct overwrite of EIP on the stack

– Sprayed on the Heap and called as a function pointer

– Allocated by small ROP payload and jumped to by last gadget

• Minus Zynamics Google, they do ROPperies

• Usually some requirements because it is delivered inline

– Null byte free, because it terminates a C-String

– \r\n free, because it often is a delimiter in network protocols

– ...

Decoder Stub Encoded Shellcode



Shellcode Decoder Structure

jmp getpc

start:
pop ebp
push 42
pop ecx
push 23
pop edx

decrypt:
xor byte [ebp+ecx], dl
loop decrypt

jmp payload

getpc:
call start

payload:

; jump to GetPC

; GetPC 2: ebp = EIP

; load counter = 42

; load key = 23

; unxor one byte
; repeat until ecx = 0

; GetPC 1: push EIP to stack



GetPC Sequences

•call $+5, pop r32

– Push return address for function call onto stack

– Use stack access to read back the return address

•fnop, fnstenv [esp+0x0c], pop r32

– Use a floating point instruction, address will be stored in floating point 

control aread

– Save floating point control area on stack

– Read back the instruction address from stack

• Structured Exception Handling

– Windows specific, trigger an exception

– Get address of exception instruction in exception handler



Existing Detection Approaches

• Static / Statistical Approaches

– e.g. Markov Chains for Bytecode (Alme & Elser, Caro 2009)

• Trained with shellcode / non-shellcode data

• Measures likelyhood of certain instructions following each other

– Can only detect the decoder and therefore tend to be either false positive 

or false negative prone (weighting, training data, ...)

• GetPC Sequences + Backtracking + Emulation (libemu)

– Identify possible GetPC sequences in data

– Build up tree of possible starting locations by disassembling “backwards”

• A problem on its own on the x86 CISC architecture

– Software x86 emulation to weed out (the many) false positives



libscizzle

• Identification of possible GetPC sequences

– A little less strict than libemu in terms of triggering combinations

• Brute force possible starting location around sequence

– Efficient emulation allows this performance wise

• Use efficient sandboxed hardware execution for verification

– No, this is not virtualization, no VT involved

– Yes, it is secure, so we do not get owned (trivially)

http://code.mwcollect.org/projects/libscizzle



x86 Segmentation vs. Paging

PhysicalVirtualSegment



Code Execution / “Emulation”

• Disassemble guest code

– Stop on any privileged or (potentially) 

execution flow modifying instruction

– This is roughly equivalent to “basic 

blocks”

– Segment register access is considered 

a privileged instruction ;)

• Execute one basic block at a time 

within the guest segment

• Emulate all other instructions

– Conditional jumps, calls, ...

– Abort analysis on any privileged 

instructions

• Exception: backwards short jumps



Evaluation: Performance

• 99.38 Mib / sec, 795 MiB / sec on my presentation laptop, single core

• About 1000x faster than libemu, a lot faster than Markov Chains

• This is fast enough to do it inline at GigaBit speed on a commodity 

server, think IPS

• Real world data has usually better properties than purely random data

$ ./libscizzle-test < urandom.bin 
[*] Filtering / scanning over 32.0 MiB of data took 105 ms.
[*] Verifying 700 shellcode candidate offsets...
[*] Verification over 32.0 MiB of data took 217 ms.
[*] Everything over 32.0 MiB of data took 322 ms.



Evaluation: Success Rate

• False Positives: none.

– If it is detected, it resembles valid 

shellcode

– Random data might resemble valid 

shellcode but this is a philosophical 

problem then, highly unlikely.

• False Negatives: none so far

– Tested on a lot of public shellcodes 
(tricky Metasploit ones, 

egghunters)

– Used during CTFs for testing 

libscizzle, detected everything

• DefCon, ruCTFe, ...

• Manual evasion possible



Questions?

Thanks for your attention!


